Crystal structures of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism.

نویسندگان

  • Trevor P Baglin
  • Robin W Carrell
  • Frank C Church
  • Charles T Esmon
  • James A Huntington
چکیده

The serine proteases sequentially activated to form a fibrin clot are inhibited primarily by members of the serpin family, which use a unique beta-sheet expansion mechanism to trap and destroy their targets. Since the discovery that serpins were a family of serine protease inhibitors there has been controversy as to the role of conformational change in their mechanism. It now is clear that protease inhibition depends entirely on rapid serpin beta-sheet expansion after proteolytic attack. The regulatory advantage afforded by the conformational mobility of serpins is demonstrated here by the structures of native and S195A thrombin-complexed heparin cofactor II (HCII). HCII inhibits thrombin, the final protease of the coagulation cascade, in a glycosaminoglycan-dependent manner that involves the release of a sequestered hirudin-like N-terminal tail for interaction with thrombin. The native structure of HCII resembles that of native antithrombin and suggests an alternative mechanism of allosteric activation, whereas the structure of the S195A thrombin-HCII complex defines the molecular basis of allostery. Together, these structures reveal a multistep allosteric mechanism that relies on sequential contraction and expansion of the central beta-sheet of HCII.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heparin cofactor II is regulated allosterically and not primarily by template effects. Studies with mutant thrombins and glycosaminoglycans.

Besides its critical role in hemostasis, the serine protease thrombin also participates in wound healing, inflammation, and atherosclerosis. Thrombin is inhibited by the serpins antithrombin and heparin cofactor II (HCiI) in reactions that are accelerated markedly by specific glycosaminoglycans. Following vascular injury, thrombin must be inhibited at both intravascular and extravascular sites ...

متن کامل

Binding of heparin or dermatan sulfate to thrombin is essential for the sulfated polysaccharide-accelerated inhibition of thrombin by heparin cofactor II.

Heparin cofactor II (HC II) and thrombin were chemically modified with pyridoxal 5'-phosphate, and their effects on the inhibition of thrombin by HC II in the presence of heparin or dermatan sulfate were studied. The inhibition of thrombin by HC II was enhanced about 7000-fold in the presence of heparin or dermatan sulfate. However, this enhancement by heparin dwindled to 110- and 9.6-fold when...

متن کامل

Understanding Dermatan Sulfate−Heparin Cofactor II Interaction through Virtual Library Screening

Dermatan sulfate, an important member of the glycosaminoglycan family, interacts with heparin cofactor II, a member of the serpin family of proteins, to modulate antithrombotic response. Yet, the nature of this interaction remains poorly understood at a molecular level. We report the genetic algorithm-based combinatorial virtual library screening study of a natural, high-affinity dermatan sulfa...

متن کامل

Selective cleavage and anticoagulant activity of a sulfated fucan: stereospecific removal of a 2-sulfate ester from the polysaccharide by mild acid hydrolysis, preparation of oligosaccharides, and heparin cofactor II-dependent anticoagulant activity.

A linear sulfated fucan with a regular repeating sequence of [3)-alpha-L-Fucp-(2SO4)-(1-->3)-alpha-L-Fucp-(4SO4)-(1-->3)-alpha-L-Fucp-(2,4SO4)-(1-->3)-alpha-L-Fucp-(2SO4)-(1-->]n is an anticoagulant polysaccharide mainly due to thrombin inhibition mediated by heparin cofactor II. No specific enzymatic or chemical method is available for the preparation of tailored oligosaccharides from sulfated...

متن کامل

Exosites 1 and 2 are essential for protection of fibrin-bound thrombin from heparin-catalyzed inhibition by antithrombin and heparin cofactor II.

Assembly of ternary thrombin-heparin-fibrin complexes, formed when fibrin binds to exosite 1 on thrombin and fibrin-bound heparin binds to exosite 2, produces a 58- and 247-fold reduction in the heparin-catalyzed rate of thrombin inhibition by antithrombin and heparin cofactor II, respectively. The greater reduction for heparin cofactor II reflects its requirement for access to exosite 1 during...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 17  شماره 

صفحات  -

تاریخ انتشار 2002